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ABSTRACT

We propose a framework to continuously learn object-centric representations for visual learning and
understanding. Existing object-centric representations either rely on supervisions that individualize
objects in the scene, or perform unsupervised disentanglement that can hardly deal with complex
scenes in the real world. To mitigate the annotation burden and relax the constraints on the statisti-
cal complexity of the data, our method leverages interactions to effectively sample diverse variations
of an object and the corresponding training signals while learning the object-centric representations.
Throughout learning, objects are streamed one by one in random order with unknown identities, and
are associated with latent codes that can synthesize discriminative weights for each object through
a convolutional hypernetwork. Moreover, re-identification of learned objects and forgetting pre-
vention are employed to make the learning process efficient and robust. We perform an extensive
study of the key features of the proposed framework and analyze the characteristics of the learned
representations. Furthermore, we demonstrate the capability of the proposed framework in learning
representations that can improve label efficiency in downstream tasks. Our code and trained models
will be made publicly available.

1 Introduction

What are human infants and toddlers learning while they are manipulating a discovered object? And, how do such
continual interaction and learning experiences, i.e., objects are discovered and learned one by one, help develop
the capability to understand the scenes that consist of individual objects? Inspired by these questions, we aim for
training frameworks that enable an autonomous agent to continuously learn object-centric representations through
self-supervised discovery and manipulation of objects, so that the agent can later use the learned representations for
visual scene understanding.

A majority of object-centric representation learning methods focus on encoding images or video clips into disentangled
latent codes, each of which explains an entity in the scene, and together they should reconstruct the input. However,
without explicit supervision and more sophisticated inductive biases beyond parsimony, the disentanglement usually
has difficulties aligning with objects, especially for complex scenes. We leverage the fact that an autonomous agent
can actively explore the scene, and propose that the data collected by manipulating a discovered object can serve as an
important source for building inductive biases for object-level disentanglement.

In our proposed framework, whenever an object is discovered by the agent, a dataset containing images and instance
masks of this object can easily be sampled via interaction compared to annotating all the objects. Theoretically
speaking, any function of the images induced by the discovered object could be a representation of the object. For
example, let φ be an encoder implemented by a neural network, and let x be the image of an object, we can say that
φ(x) is a representation of the object. Similarly, the encoder itself can also be a representation of this object since
φ = arg minφ L(φ, x), i.e., φ is the output of an optimization procedure that takes the object’s images as input.

*Equal Contribution.
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We employ network weights as the object-centric representations. Specifically, the proposed method learns an object-
centric representation from the data collected by manipulating a single object, through learning a latent code that can be
translated into a neural network. The neural network is produced by a discriminative weight generation hypernetwork
and is able to distinguish the represented object from anything else. In order to learn representations for objects
that stream in one by one, the proposed framework is augmented with an object re-identification procedure to avoid
learning seen objects. Moreover, we hypothesize that object representations are embedded in a low-dimensional
manifold, so the proposed framework first checks whether a new object can be represented by learned objects; if not,
the new object will be learned as a base object serving the purpose of representing future objects, thus the name object
pursuit. Furthermore, the proposed framework deals with the catastrophic forgetting of learned object representations
by enforcing the hypernetwork to maintain the mapping between the learned representations and their corresponding
network weights.

In summary, our work makes the following contributions: 1) we propose a novel framework named object pursuit that
can continuously learn object-centric representations using training data collected from interactions with individual
objects, 2) we perform an extensive study to understand the pursuit dynamics and characterize its typical behaviors
regarding the key design features, and 3) we analyze the learned object space, in terms of its succinctness and effec-
tiveness in representing objects, and empirically demonstrate its potential for label efficient visual learning.

2 Related Work

Object-centric representation learning falls in the field of disentangled representation learning [Chen et al., 2018b,
Higgins et al., 2016, Karras et al., 2019, Kim & Mnih, 2018, Li et al., 2020, Locatello et al., 2020a, Press et al.,
2019, Zhou et al., 2021]. However, object-centric representations require that the disentangled latents correspond to
objects in the scene. For example, [Eslami et al., 2016, Kosiorek et al., 2018] model image formation as a structured
generative process so that each component may represent an object in the generated image. One can also apply inverse
graphics [Wu et al., 2017, Yao et al., 2018] or spatial mixture models [Engelcke et al., 2020b, Greff et al., 2017,
2019] to decompose images into interpretable latents. Monet [Burgess et al., 2019] jointly predicts segmentation and
representation with a recurrent variational auto-encoder. Capsule autoencoders [Kosiorek et al., 2019] are proposed
to decompose images into parts and poses that can be arranged into objects. To deal with complex images or scenes,
[Bear et al., 2020, Yang et al., 2020] employ motion to encourage deomposition into objects. Besides motion, [Klindt
et al., 2021] shows that the transition statistics can be informative about objects in natural videos. Similarly, [Kabra
et al., 2021] infers object latents and frame latents from videos. Slot-attention [Jiang et al., 2020, Locatello et al.,
2020b] employs the attention mechanism that aggregates features with similar appearance, while Giraffe [Niemeyer
& Geiger, 2021] factorizes the scene using neural feature fields. Even though better performance is achieved with
more sophisticated network designs, scenes with complex geometry and appearance still lag. As shown in [Engelcke
et al., 2020a], the reconstruction bottleneck has critical effects on the disentanglement quality. Instead of relying on
reconstruction as a learning signal, our work calls for interactions that stimulate and collect training data from complex
environments.

Rehearsal-based continual learning. In general, continual learning methods can be divided into three streams:
rehearsal-based, regularization-based, and expansion-based. The rehearsal-based method manages buffers to replay
past samples, in order to prevent from forgetting knowledge of the preceding tasks. The regularization-based methods
learn to regularize the changes in parameters of the models. The expansion-based methods aim to expand model
architectures in a dynamic manner. Among these three types, rehearsal-based methods are widely-used due to their
simplicity and effectiveness [Aljundi et al., 2019, Buzzega et al., 2020, Cha et al., 2021, Chaudhry et al., 2020, Kemker
& Kanan, 2017, Lopez-Paz & Ranzato, 2017,?, Lüders et al., 2016, Parisi et al., 2018, Rebuffi et al., 2017, Riemer
et al., 2018, von Oswald et al., 2019]. Samples from previous tasks can either be the data or corresponding network
activations on the data. For example, [Shin et al., 2017] proposes a dual-model architecture where training data
from learned tasks can be sampled from a generative model and [Draelos et al., 2017, Kamra et al., 2017] propose
sampling in the output space of an encoder for training tasks relying on an auto-encoder architecture. ICaRL Rebuffi
et al. [2017] allows adding new classes progressively based on the training samples with a small number of classes,
while [Li & Hoiem, 2017, Pellegrini et al., 2020] store activations volumes at some intermediate layer to alleviate
the computation and storage requirement. Co2L [Cha et al., 2021] proposes continual learning within the contrastive
representation learning framework, and [Balaji et al., 2020] studies continual learning in large scale where tasks in the
input sequence are not limited to classification. Similar to the forgetting prevention component in our framework, von
Oswald et al. [2019] applies a task-conditioned hypernetwork to rehearse the task-specific weight realizations. Please
refer to [Delange et al., 2021, Parisi et al., 2019] for a more comprehensive review on this subject.

Hypernetwork. The goal of hypernetworks is to generate the weights of a target network, which is responsible for the
main task [Bertinetto et al., 2016, Chung et al., 2016, Ha et al., 2016, Krueger et al., 2017, Lorraine & Duvenaud, 2018,
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Figure 1: Object space as discriminative weights. Objects live in a low-dimensional manifold of a high-dimensional
latent space. A latent code representing a specific object is translated into segmentation weights that can distinguish the
object from anything else at different viewing conditions. The hypernetwork consists of blocks built of convolutional
and upsampling layers.

Nirkin et al., 2021, Sitzmann et al., 2020]. For example, [Krueger et al., 2017] proposes Bayesian hypernetworks to
learn the variational inference in neural networks and [Bertinetto et al., 2016] proposes to learn the network parameters
in one shot. HyperSeg [Nirkin et al., 2021] presents real-time semantic segmentation by employing a U-Net within a
U-Net architecture, and [Finn et al., 2019] applies hypernetwork to adapt to new tasks for continual lifelong learning.
Moreover, [Tay et al., 2020] proposes a new transformer architecture that leverages task-conditioned hypernetworks for
controlling its feed-forward layers, whereas [Ma et al., 2021] proposes hyper-convolution, which implicitly represents
the convolution kernel as a function of kernel coordinates. Hypernetworks have shown great potential in different meta-
learning settings [Munkhdalai & Yu, 2017, Rusu et al., 2018, Wang et al., 2019], mainly due to that hypernetworks are
effective in compressing the primary networks’ weights as proved in [Galanti & Wolf, 2020].

3 Method

We consider an agent that can explore the environment and manipulate objects which are discovered in an unknown
order. Suppose there are N objects in the scene, each of which randomly appears in an image x ∈ RH×W×3, whose
ground-truth instance segmentation mask is y ∈ RH×W×N . One can train a deep neural network that maps an image
x to its mask y with a dataset D = {(xi, yi)} that consists of such paired training samples. However, sampling from
the joint distribution p(x, y) can be extremely time-consuming, e.g., someone may have to manually draw the instance
masks for every object in an image.

On the other hand, sampling from the marginals can be much more accessible through interactions. Let Dk be the
dataset collected by observing an image xi and the corresponding binary mask of the k-th object yki ∈ RH×W , i.e.,
Dk = {(xi, yki )} ∼ p(x, yk), which is the marginal distribution obtained by integrating out other objects’ masks in
y. The goal of the proposed object pursuit framework is to learn object-centric representations from the data collected
by continuously sampling the marginals. Next, we detail the representations used for objects (as illustrated in Fig. 1),
and how we can learn them without catastrophic forgetting.

3.1 Representing Objects via Discriminative Weight Generation

In order to represent an object, one can compute any functions of the data produced with this object. For example,
the encoding of an image containing a specific object that can be used to reconstruct the input image. Here we
take a conjugate perspective instead of asking the representation to store information of an object that is good for
reconstruction. We propose that the object-centric representation of an object shall generate the mechanisms for
performing certain downstream tasks on this object, e.g., distinguishing this object from the others.

Let φ be a segmentation network with learnable weights θ that maps an image to a binary mask, i.e., φ : Θ ×
RH×W×3 → RH×W . Moreover, let ψ : ζ → Θ be the mapping from the latent space ζ to the weights of the
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segmentation backbone φ. We define the object-centric representation of an object o as a latent zo ∈ ζ, such that:

E(xi,yo
i )∼p(x,yo)∆(φ(ψ(zo), xi), y

o
i ) ≥ τ, (1)

where the expectation is computed according to p(x, yo), i.e., the marginal distribution of object o, and ∆ is a similarity
measure between the prediction from φ and the sampled mask yo. In other words, zo is a representation of object o, if
the network weights generated from zo are capable of predicting high-quality instance masks regarding the object under
the corresponding marginal distribution. The threshold τ is a scalar parameter that will be studied in the experiments.
Now we detail the proposed object pursuit framework, which unifies object re-identification, succinctness of the
representation space, and forgetting prevention, for continuously learning object representations.

3.2 Object Pursuit

Given the definition of object-centric representations in Eq. 1, our goal is to construct a low-dimensional manifold to
embed objects in the input space ζ of the weight generation hypernetwork ψ. We conjecture that the low-dimensional
manifold can be spanned by a set of base object representations. More explicitly, we instantiate two lists z and µ,
which store the representations of the base objects and the embeddings of the learned objects, respectively. We denote
zt−1 = {zi}mi=1 and µt−1 = {µi}ni=1 (n ≥ m, with n the number of learned objects andm the number of base objects,
up to time t− 1) as the constructed lists after encountering a (t− 1)-th object. Note that µi has the same dimension as
the number of base object representations. Similarly, we denote ψt−1 as the corresponding hypernetwork parameters.

As discussed, when the t-th object ot is discovered, a datasetDt = {(xj , ytj)} can be easily sampled from the marginal
distribution p(x, yt) through interactions. However, such object might already be seen previously. Thus, it is necessary
to apply re-identification to avoid repetitively learning the same object. According to the definition in Eq. 1, object ot
will be claimed as a seen or learned object if the following condition is true (| · | is the cardinality of a set):

max
i≤|µt−1|

E(xj ,yt
j)∈Dt∆(φ(ψt−1(zi), xj), y

t
j) ≥ τ. (2)

with zi = µi ·zt−1. In this case, object ot will be assigned the identity i∗ that achieves the maximum value. Otherwise,
if Eq. 2 is not valid, ot is considered as an object that has not been learned.

Learning base object representations. An object ot that can not be identified with the list of learned objects µt−1 can
potentially serve as a base object whose representation should be added to the list of base representations z. To ensure
that object ot qualifies as a base object, we propose the following test which checks whether ot can be embedded in
the current manifold spanned by zt−1:

µ∗ = arg max
µ∈R|zt−1|

E(xj ,yt
j)∈Dt∆(φ(ψt−1(µT zt−1), xj), y

t
j) + α‖µ‖1, (3)

where µ∗ is the optimal embedding for object ot regarding zt−1 under the `1 regularizer to encourage sparsity. If the
first term of Eq. 3 passes the threshold τ with the representation µ∗T zt−1, then we consider ot as an object that should
not be added to the list of bases since it can already be represented by the existing base objects.

Next, if ot does not fall on the manifold spanned by zt−1, a joint learning of the representation of ot and the hy-
pernetwork ψ shall be performed so that a new base object representation can be added to the list. However, since
updating the hypernetwork could result in catastrophic forgetting of the previously learned object representations, it is
also necessary to constrain the learning process, and the training loss is:

z∗, ψ∗ = arg max
z,ψ

E(xj ,yt
j)∈Dt∆(φ(ψ(z), xj), y

t
j) + α‖z‖1 + β

∑
i≤|µt−1|

‖ψ(µTi z
t−1) − ψt−1(µTi z

t−1)‖1, (4)

where the first two terms help to find a good representation for object ot under the sparsity constraint, and the third term
enforces that the updated weight generation hypernetwork maintains the previously learned object representations. The
value of the negative scalar coefficients α, β will be detailed in the experiments.

Backward redundancy removal. The last but not the least component of the proposed object pursuit framework
is to have a backward redundancy check. Since the weight generation hypernetwork is updated to ψt = ψ∗ with
Eq. 4, there may now exist an embedding µ∗ (computed using Eq. 3) that re-certifies object ot as an object falls on the
manifold spanned by zt−1 under ψt. If this is true, we set zt = zt−1, otherwise, z∗ is added to the list of base object
representations since object ot is now confirmed as a base object. In some rare cases, object ot might be hard to learn,
e.g., z∗ may not satisfy the criterion described in Eq. 1 under the current hypernetwork ψt. In this case, we simply
toss away this object so that it can be better learned in the future as the pursuit process evolves. The proposed object
pursuit framework is also summarized in Algorithm. 1.
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Figure 2: Data collected in iThor. Target objects are highlighted by their instance masks.

4 Experiments

We target the learning scenario where a scene consists of multiple objects, each of them can be discovered and manipu-
lated through interactions. The objects are learned one by one in a continuous manner but with unknown orders. There
are two main aspects of the whole pipeline, i.e., data collection by sampling the marginals of individual objects and
construction of the object-centric representations with Object Pursuit. We focus on continuous object-centric represen-
tation learning, and thus orient our study on the behavior and characteristics of the proposed object pursuit algorithm.
We also perform experiments on one-shot and few-shot learning, and show the potential of the learned object-centric
representations in effectively reducing supervisions for object detection. Next, we brief our data collection process.

4.1 Setup

Data collection. To learn diverse objects from variant positions and viewing angles, we collect synthetic data within
the iThor environment ([Kolve et al., 2017]), which provides a set of interactive objects and scenes, as well as accurate
modeling of the physics. We collect data of 138 different objects to generate their images and masks. The 138 objects
are divided into 52 pretraining objects, 60 train objects for the pursuit process, and 25 test unseen objects. To focus on
the representation learning part, we abstract the interaction policy, and the data collection procedure of a single object
can be summarized as follows: 1) Randomly set the positions of all the objects in the scene. 2) Calculate all available
camera positions and viewing angles from which the target object (to be learned) is visible so that the sampling is
effective. The camera position, yaw angle, and pitch angle change within the range of 0.4 (grid size), 4◦ and 30◦

respectively. 3) For each camera position and viewing angle, we collect a 572 × 572 RGB image and a binary mask
of the target object. 4) Repeat (1-3) for all objects in the stream. Please check Fig. 2 for the sampled data.

Network implementation In our experiment, we use Deeplab v3+ [Chen et al., 2018a] as the segmentation network
φ, which consists of 3 parts: a backbone to encode features at different levels, an aspp module, and a decoder to
predict the segmentation probability per pixel. We use resnet18 as the backbone (encoder), whose weights are fixed
both in the pretraining and the pursuit process. The weights of the aspp module and the decoder are generated by
the convolutional hypernetwork ψ. For each convolution layer in the aspp module and the decoder, ψ takes object
representation z as input, and predict weights of the convolution kernel using an upsampling convolution block. The
input representation z first expanded to a 1024-dim vector by a linear mapping and resized to a 1× 1× 32× 32 tensor.
After going through several upsampling blocks, each of which consists of an upsampling followed by a convolution
and a leaky Relu, the 1 × 1 × 32 × 32 tensor turns into the output kernel weight. For other network weights like
’running mean’ and ’running var’ in batch normalization, the hypernetwork linearly maps representation z to generate
them.

Training details. For the similarity measure ∆, we use the dice score proposed in [Milletari et al.]. In addition to ∆,
we find that it will be beneficial to add an extra binary cross-entropy term when learning base object representations
using Eq. 4. Note, to deal with imbalanced foreground and background sizes, we also put a weighting on the entropy
terms that correspond to the object so the learning can be more efficient. The sparsity constraint α is set to−0.2,−0.1
for Eq. 3 and Eq. 4 respectively, and β = −0.04 for all our experiments. To improve the convergence, we also
warm up the hypernetwork using the pretraining objects. During pretraining, each mini-batch contains training data
from one object, and we randomly choose which object to use in the next batch. In backpropagation, we update the
hypernetwork ψ and representation z for each object. When the pretraining is done, we perform a redundancy check
to get rid of the objects that can be represented by others. For simplicity, this check is performed in sequential order,
and we are left with a set of base object representations to carry out the following studies.

4.2 On the Representation Quality Measure

The learning dynamics and the output of Algorithm. 1, i.e., the lists of base object representations z and the learned
objects µ, together with the weight generation hypernetwork ψ, are primarily affected by the representation quality
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Table 1: Re-identification: recall and pre-
cision on seen objects.

τ 0.5 0.6 0.7 0.8

recall 1.0 1.0 1.0 1.0
precision 1.0 1.0 1.0 1.0

Table 2: Re-identification: rate of unseen objects been identified
along the course of the pursuit process.

τ
No. of trained objects

8 16 24 32 40 48 56

0.5 0.40 0.52 0.56 0.60 0.64 0.64 0.72
0.6 0.08 0.20 0.28 0.44 0.56 0.60 0.60
0.7 0.16 0.28 0.32 0.40 0.40 0.48 0.44
0.8 0.00 0.08 0.16 0.24 0.28 0.28 0.28

measure τ introduced in Eq. 1. For example, τ controls whether an object will be claimed as seen, and it also
determines whether or not an object falls on the manifold spanned by the current base object representations. We
study each of them in the following.

4.2.1 Re-identification

As described in Eq. 2, when an object is discovered, it will be first checked against the learned objects and re-identified
if the maximum expected similarity passes τ . To examine how the quality measure τ influences the re-identification
process, we run multiple object pursuit processes with different τ ’s. All runs are performed with the same training
object order so that the only variant is the value of τ . For evaluation, we preserve a separate set of 25 objects (unseen
test objects) that never appear during training. Note, among these unseen test objects, there are also objects that are
similar to the training ones. And we use 27 objects (seen test objects) from the warp-up joint training described above
to check the re-identification accuracy.

First, we check how τ affects the re-identification for seen objects. As reported in Tab. 1, if an object is learned and
added to the object list µ, it will be claimed as seen by Eq. 2, and the re-identification accuracy is always one. This
is true for τ varying between 0.5 and 0.8, which demonstrates the robustness of the re-identification process against τ
for objects learned.

Figure 3: Unseen objects re-identified as learned. 1st row: unseen
objects, 2nd to 4th row: similar objects from the learned object list.
Bounding boxes highlight the objects with embedded text indicating
the instance identity.

Second, we check the behavior of the re-
identification component for unseen objects
under different τ ’s along the pursuit process.
In Tab. 2, we can observe that as more and
more objects are learned during the pursuit,
the unseen objects that are claimed as seen
from the re-identification process also in-
crease. This observation is consistent across
different τ ’s. Furthermore, the rate of un-
seen objects identified as seen converges at
the end of the pursuit process, but at differ-
ent levels for different τ ’s, i.e., the converged
rate is lower for larger τ . It may seem incor-
rect if an unseen object is claimed as seen by
the re-identification component. However, if
we examine the unseen objects (see Fig. 3),
we can see that it is quite natural for these
unseen objects to be labeled as seen, because
they are similar to one or multiple objects in
the object list µ. This is indeed a desired
characteristic since representing or learning
an object that is similar to existing ones may
not be informative. Moreover, one can adjust
τ to tune the similarity level. For example, if
one insists on learning an object similar to
previously seen objects, increasing the value
of τ should work as evidenced by the con-
verged rates for τ ’s in Tab. 2.

In a nutshell, the representation quality mea-
sure τ has little effect on the re-identification recall and accuracy for learned objects. Yet, it controls the granularity of
the learned representations by modulating the rate of unseen objects that would be identified as learned ones.
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4.2.2 Succinctness and Expressiveness

Table 3: Pursuit dynamics by varying
τ . Please see the enclosing descrip-
tion for the meaning of the metrics
and corresponding analysis.

τ 0.5 0.6 0.7 0.8

|z|/N 0.34 0.42 0.42 0.40
|µ|/N 0.46 0.58 0.46 0.40
Re 0.19 0.21 0.00 0.00
Rf 0.08 0.18 0.42 0.54
Aµ 0.75 0.77 0.83 0.86

We want to study how the representation quality measure τ affects the over-
all learning dynamics in terms of the succinctness and expressiveness of the
learned base object representations. By checking Eq. 2, Eq 3 and also the pre-
vious experiment, we conjecture that if τ is small, objects similar to the learned
ones will be more easily identified as seen and certified as on the manifold. If
so, the number of objects that will be used for learning the base representations
may also be small, thus increasing the succinctness of the final representations.
Conversely, when τ increases, we would expect that more objects will con-
tribute to the base representations, thus increasing the expressiveness. We like
to check if the observations align with our conjecture and how such behavior
affects the quality of the learned bases. To facilitate the analysis, we propose
to check the following quantities: 1) |z|/N , which is the portion of objects that
contribute to base representations; 2) |µ|/N , which is the portion of learnable
objects that are added to the object list µ; 3)Re, rate of objects that are confirmed unseen but can be expressed by the
base object representations; 4) Rf , rate of objects to be learned as base representations, which are later considered as
redundant or unqualified; 5) Aµ, segmentation accuracy on learned objects.

We report the above metrics across different τ ’s in Tab. 3. As expected, a larger τ generally encourages more objects
to be learned as base representations. For example, the number of base objects learned is much larger when τ increases
from 0.5 to 0.6 (first row). This is also evidenced by the third row of Tab. 3, which shows that the probability of an
unseen object to be expressed by base representations will decrease as τ increases, creating more attempts to learn
objects as bases. However, the number of learnable objects, i.e., a base object or an object that falls on the manifold
spanned by the bases, attains the maximum at a medium value τ = 0.6 (second row). The underlying reason is two-
fold: First, a very small τ means that many objects will be identified as seen and thus discarded to save computation;
Second, a very large τ can make the qualification of an object representation extremely difficult such that it will be put
aside for future learning. The latter is also supported by the metric Rf shown in the fourth row, i.e., the probability
that an object will be considered redundant or unqualified after learning as a base object will increase as τ becomes
large. Lastly, when checking the quality of the base representations in expressing a common set of learned objects, we
can see that the segmentation accuracy correlates with τ in a positive manner (fifth row).

In general, τ directly impacts the quality of the base representations for learned objects, but its effect on the number
of base representations produced by the pursuit procedure is not monotone. Within a moderate range, we can increase
τ to encourage learning more base representations, however, we may not want τ to be too large that only a few objects
are qualified as base representations.

4.2.3 Label Efficiency

Table 4: N-shot learning the representation of a new object.
Training is performed by searching the optimal representation
either on the manifold spanned by the base objects, or over the
entire representation space. Segmentation accuracy on the test
set is reported for bases and hypernetworks learned at different
τ ’s.

n over base object representations full representation space

0.5 0.6 0.7 0.8 0.5 0.6 0.7 0.8

1 0.377 0.416 0.454 0.446 0.225 0.264 0.288 0.289
5 0.595 0.606 0.634 0.614 0.461 0.475 0.468 0.453
10 0.622 0.647 0.677 0.649 0.542 0.526 0.524 0.520
2000 0.697 0.731 0.740 0.731 0.669 0.698 0.702 0.718

Besides the training dynamics, we evaluate the use-
fulness of the learned object base representations in
terms of how it facilitates learning the representa-
tion of a new object with only a few annotations.
For comparison, we also perform learning of the
object representations over the entire representation
space. Training is similar to Eq. 3. The quality of
the learned object representations is measured by
their segmentation accuracy on test data.

As reported in Tab. 4, the quality of the few-shot
learned representations increases as τ gets large,
which aligns with our observation in the previous
section that the expressiveness of the learned ob-
ject base representations highly correlates with τ .
However, note that there is a slight drop in perfor-
mance when τ increases from 0.7 to 0.8 (fourth and fifth column). The reason is that as τ gets really large, it also
becomes much easier to omit objects that can not pass the quality test. As a result, the hypernetwork, which translates
the representation to network weights, also gets less trained. Thus, when tested on new objects, the performance may
not match that of the trained objects for the same set of base representations, suggesting again that a moderate τ is
needed to balance between the succinctness and generalization of the learned base representations.

The above observation does not hold for the representations learned over the full space. Moreover, when comparing
the performance within the low data regime, we can see that those object representations found on the manifold
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outperform those found in the entire space by a large margin. For example, the new object representations found with
the learned bases under τ = 0.7 outperform their counterparts by 57.6%, 35.5%, 29.2% for the 1-shot, 5-shot, and
10-shot settings, respectively. This demonstrates the potential of using the learned base representations to help reduce
the supervision needed to learn a new object. Also, it confirms that the learned base representations are meaningful
since the manifold spanned by them provides a good regularity for learning unseen objects.

4.3 Order of Training Objects

Table 5: Pursuit dynamics under
random training object order.

|z|/N |µ|/N Re Rf Aµ

mean 0.43 0.50 0.10 0.15 0.76
std-dev 0.02 0.03 0.04 0.04 0.01

The proposed object pursuit algorithm learns object representations in a stream,
so we also check how the learning dynamics vary when the order of training
objects changes. We fix τ to 0.6 and run ten pursuit processes with random
training object order. We reported the mean and standard deviation of the met-
rics proposed in Tab. 3. As observed in Tab. 5, the pursuit process is robust to
the training object order.

4.4 Forgetting Prevention

In this section, we want to check if the forgetting prevention term in Eq. 4 is
effective and how it affects the pursuit dynamics. We run pursuit processes with different values of the coefficient β,
where the quality measure τ and training object order is fixed. Segmentation accuracy Aµ and forgetting rate γf (i.e.,
how many objects falls under the quality measure after the process is finished) in Tab. 6 demonstrate the effectiveness of
the forgetting prevention term: when |β| decreases, the segmentation accuracy drops, and the forgetting rate increases;
when |β| vanishes, the forgetting rate reaches 97%, which means that the hypernetwork almost forgets all the object
representations it previously learned. We can also observe that both |z|/N and |µ|/N increase when |β| decreases.
This is due to the fact that when the hypernetwork forgets what are learned, any incoming object will be unlikely to
be considered as seen, nor to be expressed by current bases. So the hypernetwork tends to learn them as new base
objects, which causes |z|/N to increase. This is also evidenced by the drop inRe, which is rate of new objects that are
certified as on the object manifold. Furthermore, without the constraint of the forgetting prevention term, it is more
likely to get higher accuracy in learning a new object, which decreases the number of unqualified objects. Since the
number of redundant objects and unqualified objects both drop when |β| decreases, |µ|/N increases. Thus, in order to
reduce computational cost and enforce learning meaningful representations, one would like to apply a relatively large
|β| during the pursuit process.

Table 6: Pursuit dynamics under
different forgetting prevention con-
straints.

|β| 0.0 0.02 0.04 0.1

|z|/N 0.61 0.46 0.42 0.39
|µ|/N 0.88 0.61 0.58 0.54
Re 0.13 0.14 0.21 0.21
Rf 0.19 0.14 0.18 0.21
Aµ 0.02 0.67 0.71 0.72
γf 0.97 0.04 0.02 0.02

We can also observe that as |β| changes from 0.02 to 0.1,Rf increases mono-
tonically, this is because the forgetting prevention constraint affects the qual-
ity of the learned representations, since less freedom is available when |β| is
extremely large. Consequently, fewer objects will be qualified with a good
representation measured by τ . On the other hand, Rf is also high when beta
is set to 0. The reason is that when learning a new object without the con-
straint of the forgetting prevention term, the hypernetwork tends to overfit,
thus making it easier for this new object to be considered as redundant, i.e., it
can be expressed by the existing base representations, even though the learned
representation will be forgotten by the network right after the current learning
episode.

4.5 More Results

In the appendix, we also provide ablation studies on how the sparsity con-
straints in Eq. 3 and Eq. 4 affect the learning dynamics and the quality of the learned representations. By examining
the most relevant base objects for a novel object that can be expressed by the base representations (Fig. 4), we can
qualitatively see that high-level concepts are learned within the representation space as objects that share similar ge-
ometry or appearance will be more correlated than others. For curiosity, we also test the usefulness of the base object
representations on real-world video objects. As demonstrated in Fig. 7, the learned base representations can capture
well the representations of real-world objects with a single learning example even if they are trained on synthetic data.

5 Conclusion

We demonstrate that the proposed object pursuit framework can be used for continuously learning object-centric
representations from data collected by manipulating a single object. The key designs, e.g., object re-identification,
forgetting prevention, and redundancy check, all contribute to the quality of the learned base object representations.
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We also show the potential of using the learned object-centric representations for tasks at a low-annotation regime.
Especially, the learned object manifold provides a meaningful and effective prior on objects, which can facilitate
downstream tasks that require object-level reasoning. As inspired by an initial attempt on the real-world data (Fig. 7),
we would also like to check the proposed object pursuit algorithm in the real world. For example, we can train an
autonomous agent to collect data from the natural 3D environment with a more efficient interaction policy, and then
test the learned object representations on real-world compositional visual reasoning tasks. These are in our future
research agenda.
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A Appendix

A.1 Algorithm

Here is the Object Pursuit algorithm we describe in the method section. In this algorithm, we first check if
the object is seen according to Eq. 2. If the object is seen, we directly move on to the next object, other-
wise, we start to check if the object can be represented by current bases according to Eq. 3. If it can be ex-
pressed, we add this object to the object list µ and move on to the next object, otherwise, we need to train
for a new z and update the hypernetwork using loss function Eq. 4. After training, we start a second redun-
dancy check, with the same criterion Eq. 3 in the first check. If the object can be represented by bases, we just
add it to the object list µ, otherwise, we consider it a new base and add it to both base list z and object list
µ. The algorithm runs in a loop to simulate that objects are continually showing up and learned by our system.

Algorithm 1: Object Pursuit

Result: A set of object representations µT = {µi}Ni=1, zT = {zi}Bi=1, and the hypernet ψT , with T ≥ N ≥ B
initialization: z0 = µ0 = ∅, ψ0 is randomly initialized;
while t ≤ T do

Sample Dt = {(xj , ytj)} ∼ p(x, yt);
Check if object ot is in µt−1 (parameter τ );
if YES then

µt = µt−1;
zt = zt−1;
ψt = ψt−1;

else
Check if object ot can be represented using zt−1 (parameter τ );
if YES then

µt = µt−1
⋃
µot ;

zt = zt−1;
ψt = ψt−1;

else
Training for zot and ψ′ under the constraint of all objects in µt−1;
ψt = ψ′;
Check if zot can now be approximated by zt−1;
if YES then

µt = µt−1
⋃
µot ;

zt = zt−1;
else

µt = µt−1
⋃

[0, 0, ..., 0, 1];
zt = zt−1

⋃
zot ;

end
end

end
end
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A.2 Ablation on the Sparsity Constraints

Table 7: Pursuit dynamics under dif-
ferent L-1 norm coefficients on µ

|α| 0.0 0.1 0.2 0.5

|z|/N 0.45 0.42 0.42 0.40
|µ|/N 0.57 0.55 0.58 0.51
Re 0.11 0.19 0.21 0.08
Rf 0.21 0.15 0.17 0.25
Aµ 0.74 0.75 0.73 0.77

1. L-1 norm coefficient on µ

In this ablation study, we aim to understand whether L-1 norm on combination
coefficient µ in Eq. 3 affects an object falls on the manifold or not. From
Tab. 7 we can see that when L-1 norm coefficient |α| change from 0.0 to 0.2
(absolute value), Re increases, which means more object can be expressed by
current bases, causing the number of base objects (|z|/N ) to decrease. It shows
that if we properly increase the constraint on µ and promote the sparsity of µ,
it may be easier to find a µ that can express the object. However, if |α| exceeds
a certain limit, e.g. 0.5, too much constraint added to µ (which makes µ harder
to change), finding a µ to express an object becomes difficult, thus the number
of objects that can be expressed (Re) decreases, as shown in Tab. 7.

We can also see that Rf first drops then increases when |α| gets bigger. Our
reasoning is that, even though more objects can not be expressed by the bases at the first redundancy check and have to
be learned as new representations when |α| increases, the chances that they are unqualified or redundant after training
also increase, making the base number continually decreases.

2. L-1 norm coefficient on z

Table 8: Pursuit dynamics under dif-
ferent L-1 norm coefficient on z

|α| 0.0 0.1 0.2 0.5

|z|/N 0.46 0.42 0.42 0.39
|µ|/N 0.56 0.58 0.56 0.55
Re 0.12 0.21 0.21 0.24
Rf 0.14 0.18 0.12 0.19
Aµ 0.74 0.72 0.74 0.72

In this ablation study, we focus on how L-1 norm on z affects object pursuit.
We change the coefficient α and evaluate the pursuit process. As Tab. 8 shows,
when |α| increases, the number of objects that can be expressed by bases (Re)
also increases, causing the base number (|z|/N ) to decrease. This is because
regularization on z prevents the object representations from getting too far
from each other, thus making z distribute more uniformly. Since z is well
distributed, it may be easier to find a coefficient µ that can express an object.
We also find it in our experiment that when |α| gets bigger, more objects will
be considered as unqualified due to their low training accuracy, especially
when |α| = 0.5. It shows that more constraints on z may cause it harder
to find a proper z to represent an object during training, thus decrease the
accuracy. It also explains why the number of learnable objects (|µ|/N ) decreases when |α| change from 0.1 to 0.5.

A.3 Understand the Base Representations

Fig. 4 shows some visualization results of unseen objects and the corresponding active base objects. The results are
from the pursuit process. When an unseen object is detected, and if it can be expressed by the current bases, we then
find the combination coefficient µ through Eq. 3. In Fig. 4, we show three examples that the unseen objects can be
expressed by base objects, and the combination coefficient values are shown below the corresponding bases. We show
the top 5 bases that have the highest coefficient value among all the bases.

In the first example (the 1st row), the base object ’DishSponge 1’ has the highest coefficient value in expressing a
green cup (Cup 3). We conjecture that ’Cup 3’ and ’DishSponge 1’ share a similar color, and green objects are rare
in this set of bases, causing the DishSponge’s coefficient to be the highest one. ’Dumbell 1’ may share a similar shape
with ’Cup 3’, since they are both thin in the middle and thick in the end. The second example (the 2nd row) shows
that if there is a base object (Bowl 7) that is evidently more similar to the target object (Bowl 10) than other bases,
its coefficient value may be the highest. Here Bowl 7 and Bowl 10 are similar in both color and shape, but they are
different in shape at the bottom of the bowl. In the third example (the 3rd row), the black cup (Cup 2) and the black
pot (Pot 1) share the same color, while the black cup (Cup 2) and the glass cup (Cup 1) share a similar shape.

These results show that the object representation space learned through object pursuit characterizes some high-level
concepts (e.g. color, shape) that help better understanding the objects. An unseen object tends to be represented by a
base object with similar color or shape. Although in some cases, understanding the base representations is not as easy
as the examples shown in Fig. 4, this regular pattern is still evident in most cases.

A.4 More Visual Results on Synthetic Data

Fig. 5 shows more segmentation results from the experiments. In these examples (the 1st row and the 2nd row), ’bowl’
and ’kettle’ are two unseen objects which are not in the object list µ and the base list z. To represent an unseen
object, we fix the hypernetwork and try to find a combination coefficient µ∗ to express the target object with the bases,
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Figure 4: Unseen objects expressed by base objects. Unseen objects in the 1st column (Cup 3, Bowl 10, Cup 2) are
represented by base objects in the 2nd to 6th columns with combination coefficients shown below the object. Higher
coefficient means greater weight or importance in the combination.

Figure 5: More segmentation results. The objects showed above are unseen objects that are expressed by base objects.

according to Eq. 3. The unseen object, which resides on the manifold (the object space) with latent code z can be
segmented by the segmentation network generated from its representation with the hypernetwork. Note, we test the
segmentation network on the validation dataset.

Even if the unseen object is expressed by base objects which may share some similarity with it, the unseen object can
still be segmented accurately from various backgrounds in different positions and angles, as Fig. 5 shows. It verifies
that the learned representations, together with the hypernetwork, preserve discriminative object-centric knowledge.
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Figure 6: Demonstration of obtaining instance masks of manipulated objects through interaction. 1st row: images of
a robotic arm manipulating a cube. 2nd row: instance masks obtained from interaction by motion segmentation and
edge refinement.

A.5 Real-World Data Collection and Learning

We propose that our framework object pursuit can be used with autonomous agents that explore the environment
and interact with objects. Through interactions, an agent could learn object-centric representations, and this is an
unsupervised setting since no human annotations are required when the agent interacts with objects in the physical
scene.

Currently, we perform the major experiments on synthetic data due to the lack of a robot to perform the data collection
in the real world. Moreover, we like to have a proof of concept before carrying out real-world experiments, which could
involve an enormous amount of research funds and effort, which is out of the scope of our current work. However, we
are confident that transitioning from the synthetic environment to the real world is highly practical as all the technical
components that need to be used in the real world are ready.

In order to evaluate how practical it is for a robot to perform the pursuit process in the real world, we need to look
into two aspects. First, how possible it is to obtain instance masks of the manipulated object. Second, how efficient the
learning can be given the objects that need to be learned. Next, we demonstrate how it is possible to get the instance
masks of a real-world object through interaction. And we discuss the second aspect in the following section.

A.5.1 Collect Data in the Real-World via Interaction

In our setting, a robot manipulates only one object at a time and learns its representation. Two cues can be used to
obtain the instance mask of the object being manipulated. Robotic arm localization and motion. It is easy to know
where the robotic arm is within the view through calibration. Also, motion segmentation is a well-studied topic on
real-world objects in the literature [Charig Yang et al., 2021, Yang et al., 2019]. A possible pipeline is to first apply
motion segmentation on the images, and this should give the masks of both the robotic arm and the object as they are
both moving. To remove the portion of the robotic arm, the agent can treat its arm as the first object to learn, so that it
knows how to segment its arm in the future. By subtracting the arm, it now has the mask of the manipulated object.

Fig. 6 shows an example of getting instance masks from a video of object manipulation without supervision. In this
example, the background in the video is static (but the motion segmentation algorithm we employed can also work
when there is ego-motion), and we first segment the cube together with the robot hand using motion segmentation
[Charig Yang et al., 2021]. Then we remove the robot hand from the segmentation mask, using “densecrf” [Krähenbühl
& Koltun, 2011] as post-processing. As mentioned, there are other substitutes to exclude the hands, such as using a
specifically trained segmentation model of the robotic arm. The segmentation process can run at 5 frames per second.
And the results show the practicality of obtaining instance masks during manipulating objects in the real world.

A.5.2 Real-World Object Pursuit

To evaluate the efficiency and robustness of learning on real-world images or videos, we conduct experiments on two
large-scale real-world datasets, i.e., Youtube VOS [Xu et al., 2018] and CO3D [Reizenstein et al., 2021].

YouTube-VOS We train and evaluate our framework on the Youtube-VOS dataset, which contains 65 categories. Each
category may appear in multiple video sequences, and there may be multiple instances of the same category in a video
sequence. We traverse all the categories, and for each category, we sample one video sequence from all sequences
containing a single instance of this category to serve as the object we pursuit (Note this is to stimulate the interaction
that should happen in the real world). The number of frames in a video sequence typically ranges from 20 - 36. For
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each video sequence, we repeat the frames many times so that the effective dataset size is around 500 samples. For
each frame, we apply horizontal flip augmentation and random crop augmentation. Specifically, we crop each frame
with the same ratio along the x and y-axis, which is a random number between 0.6 and 1. Finally, we resize the frame
to 320x180 (The origin size is 1280x720).

CO3D We also test our framework on CO3D. Since processing the original dataset is too time-consuming (18,619
objects of 50 MS-COCO categories), we randomly select 285 objects from 8 object classes: apple, banana, backpack,
baseball bat, bench, bicycle, book, and bottle as training objects. The data of each object contains a video sequence
that shows different views of the object. We randomly crop each frame to a square image, then apply horizontal flip
augmentation. After augmentation, the effective dataset size is about 200 samples per object. Each frame is at the
resolution 256x256.

Other training details. For both datasets, we initialize the hypernet with the model pretrained on synthetic data, with
no initial bases and objects. We set different quality measures τ (0.5, 0.6, 0.7, and 0.8) to evaluate our framework on
real-world data. Other settings are the same as the synthetic data experiment.

Table 9: Pursuit dynamics on YouTube-VOS dataset
by varying τ .

τ 0.5 0.6 0.7 0.8

|z|/N 0.35 0.38 0.38 0.40
|µ|/N 0.48 0.49 0.49 0.51
Re 0.20 0.16 0.14 0.10
Rf 0.30 0.32 0.52 0.58
Aµ 0.72 0.76 0.81 0.84

Table 10: Pursuit dynamics on CO3D dataset by vary-
ing τ .

τ 0.5 0.6 0.7 0.8

|z|/N 0.15 0.21 0.22 0.28
|µ|/N 0.19 0.29 0.29 0.37
Re 0.14 0.24 0.16 0.11
Rf 0.37 0.38 0.55 0.58
Aµ 0.69 0.74 0.82 0.87

Pursuit dynamics. Tab. 9 and Tab. 10 show pursuit dynamics under different τ on YouTube-VOS and CO3D datasets,
respectively. The real-world data experiments share similar patterns with the synthetic data experiments: when τ gets
bigger, Aµ (average segmentation accuracy) and Rf (proportion of unqualified and redundant objects) gets bigger,
while Re (proportion of expressed objects) first increases then decreases. A higher τ excludes objects with poor
training accuracy, thus improving the overall segmentation performance. On the other hand, a higher τ could make an
object easier to be considered as unqualified, which would be skipped and would not be learned by our system. The
number of bases and qualified objects both increase with τ , because fewer objects would be claimed as seen when τ
increases, increasing the number of learned objects. The similar patterns between real-data and synthetic data show
that the conclusions we made from Tab. 3 can generalize to the real-world domain and transfer between different
datasets.

Learning efficiency. The running time of our framework depends on the threshold τ . Generally, a smaller τ leads to
a shorter running time since objects are easier to be expressed by bases or recognized as seen objects, which will save
the time of learning base object representations. In the synthetic data experiments, τ = 0.5 could finish running 67
objects in about 10 hours, while τ = 0.8 needs 1.5 days. In the real-world experiments on youtubeVOS and CO3D
datasets, our framework can learn around 80 objects per day under τ = 0.5 and 40 objects per day under τ = 0.8.

Conclusion on real-world practicality. With these experiments, we can conclude that the observations we make in the
synthetic environment transfer to real-world data. Moreover, two key factors that are directly related to how practical
it is to run object pursuit in the real world are checked to be positive. First, collecting data with object instance
masks through interaction in the real world is practical, as verified by the effectiveness of the proposed pipeline in the
previous section. Second, the pursuit framework is robust on the real-world data, and the efficiency is good enough
to perform learning in the real world. For example, in a house with hundreds of objects, the training can be finished
within three weeks and requires no human supervision, which is far more time-consuming and complicated in practice.

A.6 Additional Results on Re-Identification

In section 4.2.1, we demonstrate the impact of the quality measure τ on seen objects and unseen objects separately
during re-identification. To further elaborate on the impact of τ , in this section, we report precision and recall on both
seen objects and unseen objects (collectively) on the scale of all testing objects. For unseen objects, we define recall as
the fraction of correctly identified unseen objects among all the unseen objects, and precision is defined as the fraction
of correctly identified unseen objects among all the objects we identify as unseen. Same for seen objects.
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Table 11: Re-identification: recall and precision of un-
seen objects (on all testing objects).

τ 0.5 0.6 0.7 0.8

recall 0.28 0.40 0.56 0.72
precision 1.0 1.0 1.0 1.0

Table 12: Re-identification: recall and precision of
seen objects (on all testing objects).

τ 0.5 0.6 0.7 0.8

recall 1.0 1.0 1.0 1.0
precision 0.60 0.64 0.71 0.80

Tab. 11 and Tab. 12 report recall and precision on unseen objects and seen objects, taking all testing objects into
consideration. We collect the number of objects our model identifies as seen or unseen from the re-identification
experiment introduced in Section 4.2.1, then compute recall and precision. From these two tables, the precision of
unseen objects and the recall of seen objects are 1.0 under all τ , which shows that a seen object can always be identified
correctly. This is crucial to our framework: if a seen object is not identified as seen, it would be problematic since we
have to learn that object repeatedly, unlimitedly enlarging the object list µ. On the other hand, the recall of unseen
objects and the precision of seen objects are lower than 1.0, showing that some unseen objects could be identified
as seen. By visualizing the data (Fig. 3), we find this situation happens only when the unseen object has substantial
similarities., e.g., in terms of color or shape, to a seen object. It has no significant impact on the training process,
since these “seen but actually unseen” objects contribute very little information to the learned object representations.
Therefore, our model learns object representations in a way that prevents learning the same or highly similar objects,
improving efficiency.

We also find that the recall of unseen objects and the precision of seen objects get larger when τ gets bigger. It is
because a larger τ increases the bar of determining an object as seen, according to Eq. 2. Therefore, a difference
would make the model consider two as different objects. As τ gets bigger, the learned representation becomes more
discriminative, at the cost of generalization, which is a characteristic that allows us to tune the system depending on
the actual need.

A.7 Evaluation on Base and Non-base Objects

Tab. 3 shows pursuit dynamics, including segmentation accuracy and re-identification rate with different τ for base
and non-base objects. We take all objects in the object list µ into consideration. However, these objects are added
to the object list in two different ways: some can be expressed by current bases (non-base), while others are trained
and accepted as a new base (base). For the former, we simply find combination coefficients µ without updating
the hypernet, optimizing the model in much smaller parameter space than the latter. This may cause different pursuit
dynamics in these two situations. This section analyzes the segmentation accuracy and re-identification rate to promote
the understanding on this aspect.

Table 13: Segmentation accuracy and re-
identification rate on base and non-base objects.

τ 0.5 0.6 0.7 0.8

non-base Aµ 0.65 0.69 0.73 N/A
Rreid 1.0 1.0 1.0 N/A

base Aµ 0.78 0.82 0.84 0.86
Rreid 1.0 1.0 1.0 1.0

As reported in Tab. 13, for both base and non-base objects,Aµ
shows the average segmentation accuracy, and Rreid shows
the proportion of the objects that are correctly re-identified as
seen objects. We report Aµ and Rreid under different τ . For
τ = 0.8, we found that all objects that appeared in the pursuit
sequence could not be expressed by bases at first and would
be learned as a new base, since the threshold τ is too high
for an object to be considered as being expressed by bases.
In this case, we could not compute Aµ and Rreid for non-
base objects. For other τ , the re-identification rate Rreid stays
stably at 1.0, showing that if a base or non-base object has been
encountered, it could be re-identified correctly. Tab. 13 shows that Aµ of both base and non-base objects increases
when τ gets bigger, which shares a similar pattern with Tab. 3.

We also find that Aµ on non-base objects could be lower than Aµ on base objects. It indicates that updating the
hypernet and training as a new base can perform better than simply combining bases due to a larger degree of freedom.
This difference can be reduced by increasing the capacity of the hypernetwork. In conclusion, the re-identification
performance is stable and accurate on both base and non-base objects, and the segmentation accuracy increases with
τ . Furthermore, the segmentation accuracy of base objects is generally higher than non-base objects.

A.8 One-Shot Learning on Real Data
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Table 14: Jaccard index on DAVIS evaluation set.

Measure ObjP. (Ours) OSVOS SEA HVS JMP

J Mean ↑ 58.1 62.1 50.4 54.6 57.0
J Recall ↑ 71.1 69.7 53.1 61.4 62.6
J Decay ↓ 25.4 27.6 36.4 23.6 39.4

We perform one-shot learning on the DAVIS 2016
dataset [Perazzi et al., 2016], a video object segmen-
tation dataset in the real scene. Under the one-shot
learning scheme, we fix the hypernet and the bases,
initialize the combination coefficient µwith only one
training sample (first frame in the sequence). From
µ, we can get the representation z for the training ob-
ject, generate the parameters of a segmentation network using the hypernet, then evaluate the segmentation accuracy.
We first conduct object pursuit on DAVIS training set as finetuning, acquiring an updated hypernet and new bases. We
then test one-shot learning on the DAVIS evaluation set, which contains 20 video sequences. We use the first frame
as initialization and evaluate the rest frames. Finally, we compare our results with a set of video object segmentation
works on the DAVIS benchmark, using the Jaccard index (IoU) as the evaluation criterion.

Table 15: The number of optimizable parameters
and average time consumed per object in one-
shot learning.

Measure ObjP. (Ours) OSVOS

# of Parameters 52 5,426,529
Learning Time (s) 10 90

Tab. 14 shows the quantitative evaluation on DAVIS. We report Jac-
card Mean (average Jaccard score for all test objects), Jaccard Re-
call (average Jaccard score for test objects whose score is higher
than 50.0), and Jaccard Decay (evaluate the Jaccard score decay
by time). We compare our framework with video object segmen-
tation methods that use both appearance and temporal information,
such as SEA [Avinash Ramakanth & Venkatesh Babu, 2014], HVS
[Grundmann et al., 2010] and JMP [Fan et al., 2015]. We also
compare our work with OSVOS [Caelles et al., 2017], a work of
one-shot learning on video without temporal information. To make a fair comparison, we implement OSVOS using
the same backbone in our framework, and remove the post-processing. As shown in Tab. 14, our method outperforms
SEA, HVS, and JMP on both Jaccard mean and recall. Compared with OSVOS, we have a slightly worse Jaccard
mean score and do better on recall score. It shows that our method can reach a better performance on objects that have
high segmentation accuracy. Generally speaking, our method is comparable to the state-of-the-art on one-shot object
segmentation learning, though there is enough space for us to push the performance.

However, in terms of learning efficiency, our method performs much better, as shown in Tab. 15. Since we only need
to optimize the coefficient µ with the size of |z|, the number of optimizable parameters of our method is much smaller
than that of OSVOS. So our framework is more efficient in storage if the trained networks need to be transmitted and
used elsewhere. Another advantage of our framework is that the one-shot learning is much faster, which shows the
potential of using our framework for real-time applications.

Fig. 7 shows some visualization results of one-shot learning on the DAVIS dataset. Although only one sample is
provided during one-shot training, our model can predict the masks on subsequent frames. In some sequences, for
example, the ’dog’ sequence showed in the 4th row of Fig. 7, the viewing angle and the object’s shape vary significantly
between frames, making it challenging to predict subsequent frames only based on the first frame without any object
prior. It could be inferred from the results that our model contains useful object-centric priors that help segment objects
in subsequent frames.
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Figure 7: Visualization results of one-shot learning on DAVIS dataset. 1st column: training data that contains only
one data sample. 2nd to 6th column: results on testing set (the rest frames in the video clip).
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